Use of a fast EM algorithm for 3D image reconstruction with the YAP-PET tomograph.

نویسندگان

  • A Motta
  • C Damiani
  • A Del Guerra
  • G Di Domenico
  • G Zavattini
چکیده

OBJECTIVE We would like to improve the image reconstructions for both signal-to-noise ratio (SNR) and spatial resolution characteristics for the small animal positron emission tomograph YAP-PET, built at the Department of Physics of Ferrara University. The three-dimensional (3D) filtered backprojection (FBP) algorithm, usually used for image reconstruction, has a limited angle restriction due to the tomograph geometry, which causes a serious loss in sensitivity. METHODS We implemented a 3D iterative reconstruction program using the symmetry and sparse properties of the 'probability matrix', which correlates the emission from each voxel to the detector within a coincidence tube. A fraction only of matrix elements are calculated before the reconstruction and stored on disk: this allows us to avoid on-line computation. A depth dependent function differentiates the voxels in a coincidence tube. Three experimental phantoms with no background were reconstructed by using the program, in comparison with traditionally used FBP. RESULTS The adopted method allowed us to reduce the computation time significantly. Furthermore, the simple depth dependent function improved the spatial resolution. With 64 x 64 x 20 voxels of 0.625 x 0.625 x 2.0 mm(3) in the field of view, the computation time was less than 4 min per iteration on a Sparc Ultra 450 Workstation, and less than 6 min per iteration on a Mac-PPC G3 300 MHz: the spatial resolution measured with a 0.8 mm diameter 18F-FDG filled capillary reconstructed in this way was 2.0 mm FWHM. By decreasing the voxel size to 0.3125 x 0.3125 x 2.0 mm(3) per voxel the transaxial FWHM was 1.7 mm with a computation time of 15 min per iteration on a Sparc Ultra 450. By using all the acquired data, the SNR improves from 1.3 to 6.0 in the worst measured case, a pair of 0.8mm diameter 18F-FDG filled capillaries, which are 2.5 mm apart each other. CONCLUSION The adoption of iterative reconstruction allowed us to overcome the loss in sensitivity of previously used FBP: this improved the SNR. The studies of symmetry and sparse properties avoided a severe increase of the reconstruction time and of storing space on disk. This fast EM Algorithm is now routinely used for the image reconstruction with the YAP-PET tomograph.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

Fast System Matrix Calculation in CT Iterative Reconstruction

Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...

متن کامل

Evaluation of 3D Reconstruction Algorithms for a Small Animal PET Camera

The use of paired, opposing position-sensitive phototube scintillation cameras (SCs) operating in coincidence for small animal imaging with positron emitters is currently under study. Because of the low sensitivity of the system even in 3D mode and the need to produce images with high resolution, it was postulated that a 3D expectation maximization (EM) reconstruction algorithm might be well su...

متن کامل

A New Fully 3D Maximum Likelihood PET Reconstruction Applicable to Different Detector Arrangements

We developed a fully-3D, maximum likelihood based, PET reconstruction routine applicable to different coincidence detector arrangements for PET. It allows to study the influence of several γ-ray detector geometries onto the corresponding reconstructed images. The scope of this study is to optimize a tomograph to be fully dedicated to the monitoring of heavy ion tumor therapy with a rotating bea...

متن کامل

Comparing IDREAM as an Iterative Reconstruction Algorithm against In Filtered Back Projection in Computed Tomography

Introduction: Recent studies of Computed Tomography (CT) conducted on patient dose reduction have recommended using an iterative reconstruction algorithm and mA (mili-Ampere) dose modulation. The current study aimed to evaluate Iterative Dose Reduction Algorithm (IDREAM) as an iterative reconstruction algorithm. Material and Methods: Two CT p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society

دوره 26 5  شماره 

صفحات  -

تاریخ انتشار 2002